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The adiabatic elastic moduli of single-crystal Zr vary linearly with hydrostatic pressures up to 4.7 kbar. 
The pressure derivatives are dCu/ dP=3 .93, dCas/dP=5.49, dC .. / dP = -0.22, dC66/ dP=0.26, dC12/dP= 
3.42, and dC1. / dP = 4.25. The average high-temperature Gruneisen mode 'YH calculated from this data is in 
wide disagreement with that calculated from the volume thermal expansion coefficient. It is proposed that 
this disagreement arises because the negative dC,, / dP is caused by the change with pressure in the cia 
ratio, rather than the volume change. 

INTRODUCTION 

The metallic crystals formed by the Group IV A ele­
ments of the periodic table Ti, Zr, and Hf are of great 
interest in the study of phase transformations in the 
solid state. At atmospheric pressures the low-temper­
ature crystal structures, simple hcp with c/ a ratio < 1.6, 
transform to the simple bcc ({3) structures at temper­
atures T c of 1135°, 1155°, and near 20000K, respectively. 
This transformation occurs in several other metals at 
temperatures near the melting points. The hcp~bcc 
(Ci~{3) transformations in Ti and Zr are somewhat 
unique in that they occur at nearly one-half the respec­
tive melting temperature and involve a small but clear 
increase in density, i.e., dTc/dP<O.l 

The measurements of the temperature dependence 
of the shear moduli C44 and C66 in single crystals of Ti 
and Zr show some unusual features which suggest that 
the (Ci~{3) transformation may be either closely asso­
ciated with or the result of phonon interactions that 
occur during heating of the hcp crystals.2 The C66 

moduli have very large negative temperature coeffi­
cients, d lnC66/ dT, and C66 becomes very small, but not 
zero, at the respective transformation temperatures. 
The C66 shear is precisely the kind of homogeneous 
shear that is required for the crystal structure change.3 

The other important feature, related to the present 
work, is that cFC66/ dTl in both metals and cFC«/ d'P 
in Zr become positive at T> 400°K. Expressing dC66/ dT 
as functions of temperature and thermal expansion, 

(1) 

ments of the pressure derivatives of all five stiffness 
moduli for Zr at 298°K are reported. 

The possible importance of the pressure derivatives 
of the stiffness moduli to the phase transformation 
comes about if it is assumed that the vibrational en­
tropy difference of the atoms within the Ci and {3 phases 
supplies the driving force for the structural change.6 

Equating the entropy to the vibrational amplitude and, 
thus, to the inverse of the vibrational frequency w we 
conclude that the Ci~{3 transformation must involve 
a decreasing average vibrational frequency. It is known, 
however, that the {3 phase has the smaller volume, so 
we are left with the implication that the Gruneisen 
coefficients ('Yi=-dlnwJd lnV) for some modes of 
vibration are negative in the Ci phase at the transforma­
tion temperature. The 'Yi for the low-frequency modes 
can be closely approximated from hydrostatic pressure 
derivatives of the stiffness moduli,7 and Gerlich8 has 
shown that the average 1i for all modes in several hcp 
crystals agree remarkably well with 'Y obtained from 
high-temperature thermal-expansion data. Thus, mea­
surements of the pressure derivatives may be quite 
useful in understanding the temperature derivatives 
of the elastic moduli, as well as precursory phenomena 
leading to the first-order phase transformations in Zr 
and Ti. 

In addition to the thermally induced structural 
change, it has also been found that hcp Ti and Zr will 
transform under pressures of 55-60 kbar to a structure 
that is similar to the omega phase found in certain Ti 
and Zr alloys.9 It may be possible to observe precursory 
phenomenon leading to this phase change from mea­
surements of the elastic moduli in the 0-4 kbar pressure 

where Civ and {3v are volume thermal expansion co­
efficient and isothermal compressibility, respectively, 
and P is hydrostatic pressure, we note that a positive range. 
cFC66/ d'P could arise from the volume expansion if 

SPECIMENS 

(aC66 jaT)v remains a nearly constant negative term, Two Ci-Zr single crystals were prepared for velocity 
while (aC66/ ap) T decreases with increasing temper- measurements in the specific crystallographic direc­
ature. Since Civ is known to increase to exceptionally tions for determining the elastic moduli. Specimen 
large values during heating of Zr and Ti,4 ,5 the second No. 1 was used for wave propagation in directions 
term of Eq. (1) could indeed be a deciding factor if parallel and perpendicular to the hexagonal (c) axis. 
dC66/ dP is negative. In the present work the measure- Specimen No.2 was used for wave propagation in a. 
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TABLE I. Basic frequency data used to compute wave-propagation velocities and related elastic 
parameters of single-crystal zirconium at 1 bar and 25°C. 

Crystal Length 
specimen (cm) 

0.48142 
0.48132 
0 .48132 
0 .48142 

2 0 .30546 

Direction 
of 

propagation 

[l00J 
[OOlJ 
[OOlJ 
[100J 

45° to 
[OOlJand 
[l00J 

Direction 
of 

vibration 

[100J 
[OOlJ 
any 
[OlOJ 

",45° to 
[OOlJ and 
[l00J 

Mode 

longit. 
longit. 
shear 
shear 

longit. 

• CRS =p.,· =l [Cu+C .. +2C .. + [ (Cu -C .. )'+4 (C .. +C .. )'1"'. 

direction 45° to the c axis. The modes of wave-propaga­
tion velocity measurements made on the two specimens 
at the ambient conditions and at high pressures are 
listed in Table I. 

EXPERIMENTAL METHODS 

The ultrasonic pulse superposition methodlO was used 
to measure the wave-propagation velocities at pres­
sures of 1 bar-4.7 kbar at 25°C. In this method an rf 
pulse is applied to a transducer, attached to one of the 
two parallel faces of the specimen, at a time interval t 
(t= 1/1r) which is equal to the one round-trip delay 
time in the specimen. 30 MHz X-cut and V-cut quartz 
transducers, 0.25 in. in diameter, were used to generate 
compressional and shear waves, respectively, in the 
specimen. Dow Corning resin 276-V9 was used for bond­
ing the transducers to the specimen. 

The pressure apparatus consisted of a pressure vessel, 
a two-stage compressing system, a manganin coil, 
a Carey-Foster pressure measuring bridge, and a 
Harwood dead-weight tester. The latter was used for 
calibrating the Carey- Foster bridge. The accuracy of 
pressure measurements is believed to be within ±0.2% 
of the values. A minimum time interval of 15 min was 
allowed between change of pressure and the measure­
ment. The temperature of the test specimen in the 
pressure vessel was maintained at 2so±0.1°C during 
all the measurements by circulating water in a constant 
temperature bath around the vessel. 

DATA REDUCTION 

The velocities were computed from the relationship, 
V= 2ljr, where l is length of the specimen and lr is the 
pulse repetition frequency (prf) ; the correction for phase 
angle in the bond was ignored. The basic measuremen ts 
of prf and the calculated velocities and the elastic co­
efficients are listed in Table I. Table II shows a com­
parison of the values of the elastic constants deter-

Pulse 
repetition Elastic 

Mode frequency Velocity Velocity coefficient 
no. (cycles/ sec) (km/sec) notation determined 

1 488 115 4.6998 v, Cu =pV,2 
2 523 456 5.0390 V2 Ca3 =pv,' 
3 230 893 2 .2227 Va C«=pv,' 
4 242 000 2.3301 v. C66 = !(Cll-C,2) 

=pV. 

5 766 387 4.6820 115 CRS· 

mined in this study and those reported previouslyY A 
good agreement (within ±1%) is found. 

The prf measurements were made at intervals of 
0.276 kbar in increasing and decreasing pressure cycles. 
Figure 1 shows the plots of frequency ratio (fr/lrO) 
versus pressure for the modes of propagation explained 
in Table I; the zero subscript is for a 1 bar value. The 
least-squares fit equations for these plots are 

V!, (lI/lol) = 1.0000+ 1.2088P, 1'=0.9995, 

V2, (f2/102) = 1.0000+1.4477P, 1'=0.9997, 

Va, (fa/l03) = 1.0000-0.5542P, 1'=0.9989, 

V4 , (14/104) = 1.0000+0.2038P, 1'=0.9946, 

V5, (f5/105) = 1.0000+ 1.3200P, 1'=0.9998, 

where P is pressure in megabars and l' is the coefficient 
of correlation. 

The elastic constants at pressure were calculated 
after correcting for changes in length and density of the 
specimen under pressure by adopting an approximation 
to Cook's method.12 ,13 The general relationship is 

(Cii) = (C;;) o (fr/lrO) 2 (ljlo)2 (p/ Po), (2) 

TABLE II. Comparison of the values of elastic constants ob­
tained in this investigation and those previously determined. 
Values are given in kilobars. 

Value 
Elastic Valu(. (Fisher and 

constant (this study) Renken) U 

CL 1436.8 1434 
Ca3 1651.7 1648 
C« 321.4 320 
C66 353.2 353 
C •• 730.4 728 
C13 658 .8 653 
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where Ci ;, ir, l, and p are, respectively elastic stiffness 
constant, pulse repetition frequency, length, and den­
sity; zero subscripts are, again, for 1 bar values. The 
parameters were computed at pressure intervals of 
0.267 kbar; the volume compressibility, {3v, and the 
linear compressibilities, {311 and {31, were assumed in­
variant within these pressure intervals. 

RESULTS 

Single-Crystal Data 

Figure 2 shows the plots of Ci j versus pressure. The 
relationships are linear within the experimental error. 
The values of the pressure derivatives dCii/ dP shown 
in parentheses were calculated from the least-squares 
analysis of the data. It should be noted that dC«/ dP 

1.008,----,---,-----,-----,---., 

ZIRC ON IUM No.2 

1.006 

1.004 

o 

~1.002 

0 .9960!,----+---.;,----...;---+ -----! 

FIG. 1. Frequency ratio versus pressure for-the - five modes 
of wave propagation (see Table I for explanation of the 
modes) . 

is negative (-0.22) and that dC66/ dP is remarkably 
small (0.26) compared to the pressure derivatives of 
C66 in other hcp metals. 

The adiabatic values for {3[[, {3J., and {3. at various 
pressures were derived from the Ci j values. The iso­
thermal values were obtained from the adiabatic- iso­
thermal relationship. (3T={3. (l+a-yT) , where a, -y, and 
T, respectively, are the volumetric coefficient of themlal 
expansion, average Gruneisen parameter, and temper­
ature. The values of a=1.733X1Q-5/deg and -y=1.01 
were used in these computations.4 

The isothermal compressibility values versus pres­
sure are shown in Fig. 3. The initial pressure deriva­
tives of the isothermal compressibilities are: 

d{3[I / dP= -1.9/ (Mbar)2, 

d{3J./ dP= -1.3/ (Mbar)2, 
and 

d{3./ dP= -4.4/ (Mbar) 2. 
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FIG. 2. Ci; versus pressure. The dCi;/ dP values are shown in 
paren theses. 
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FIG. 3. Isothermal compressibilities versus pressure. 
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TABLE III. Isotropic elastic parameters of zirconium and their pressure derivatives. 

Elaslic parameter, X Value (dX/dP) 

Adiabatic bulk modulus, K. 
Shear modulus, JIoH 

Compressional-wave velocity, v" 
Shear-wave velocity, v. 
Poisson's ratio, CT, 

Density, p 

953.1 kbar 
361.3 kbar 

4.697 km/sec 
2.357 km/sec 
0 .3317 
6.505g/ cm3 

4.08 
0 .02 
4.23 X 10-a km/sec/kbar 

-l.27XlO-· km/sec/kbar 
6 .2X IQ-4/kbar 
6 .8XIQ-a g/cm3/kbar 

Pressure Dependence of Isotropic Elastic Parameters 

The isotropic elastic moduli for zirconium were com­
puted from the Voight-Reuss- HillI4 approximation. 
The values of the various isotropic elastic parameters at 
ambient conditions and their initial pressure deriva­
tives are given in Table III. The pressure dependence 
of the bulk. modulus K, shear modulus }J., Poisson's 
ration u, and density p are shown in Fig. 4. The change 
with pressure of the shear modulus is irregular. The 
value of d}J./dP is small but, in general, positive (0.06) 
to about 3 kbar and it becomes negative at higher 
pressures. It should be noted that this unusual phe­
nomenon may be related to the pressure-induced phase 
change at ,...,60 kbar.9 

DISCUSSION 

Calculation of Intrinsic Temperature 
Coefficients of the Cij 

The pressure coefficients of the Cij are related to the 
temperature derivatives through the following variation 
of Eq. (1) 

Cirl(dCii/dT) = Cirl(aCii/aT) v 

- (av/{3vCij) (aCi;/aPh, (3) 

where the first term on the right side of the equation 
represents the intrinsic temperature dependence of the 
elastic modulus, and the second term is the temper­
ature dependence caused by volume change (thermal 
expansion). For a quasiharmonic solid the lattice fre­
quencies are not an intrinsic function of temperature 
and dCii/ dT is dependent only on volume. In real 
solids the vibrational energy will vary with applied 
stress and the change with temperature of this effect 
contributes to the intrinsic term, along with possible 
intrinsic effects of electron excitation. In those fcc 
metals where (aCi;/aph has been measured the 
volume change effect generally accounts for at least 
1 of the total temperature coefficient.15 

The two unusual features in the observed temper­
ature dependence of the elastic moduli of Zr are men­
tioned in the introduction to this paper. The total 

temperature coefficients for Zr, at 298°K, the calculated 
volume dependent terms, and the intrinsic terms that 
remain are listed in Table IV. It is clear that dC66/dT 
and dC44/ dT at 298°K are derived almost completely 
from the intrinsic contribution and only about t of 
dCn / dT is due to the volume change during thermal 
expansion. In contrast, about 86% of dK./dT is de­
rived from the volume change. 

The very evident changes2 in the total temperature 
derivatives of the elastic moduli at temperatures above 
4000 K could, however, be a consequence of the in-
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FIG. 4. Isotropic bulk and shear moduli, Poisson's ratio and 
density versus pressure. 
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TABLE IV. Intrinsic temperature dependence of elastic moduli for Zr at 298°K (units of 1O-<;oK). 

Modulus C.rl(dC.;/dT) - (av/ pyC.;) (aC.;/ aPh (C;;)-I(dC.;/dT)y 

C .. -5.02 
CS6 -10.00 
Cll -3.49 
Cu -1.94 
K.=py- I -0.76 

creasing thermal-expansion coefficient and increasingly 
negative pressure coefficients for the shear moduli. This 
would require rather large effects of temperature on the 
pressure coefficients. It is also conceivable that it is not 
the volume change but the change in cia ratio with 
thermal expansion that contributes most to the tem­
perature derivatives of the shear moduli. This cannot 
be evaluated from hydrostatic pressure data alone but 
would require measurements of the dependence of CM 

and C66 on uniaxial elastic stresses. The analysis of the 
Gruneisen parameters in the following discussion in­
dicates that the change in c/ a ratio is indeed an im­
portant factor. 

Computation of the Gruneisen Mode -y's 

The procedure for computing the volume dependence 
of the individual mode frequencies for hexagonal sym­
metry has been derived by Gerlich.s The basic defini­
tion of the mode gamma is 

(4) 

where q is the direction of wave mode propagation, p 
is the polarization index, njk denotes the Lagrangian 
strain component, and wp(q) is the frequency of the 
lattice vibration corresponding to the mode p, q. For 
strains derived from hydrostatic pressure the strain 
indices are confined to j = k = 1, 2 or 3, corresponding 

TABLE V. Comparison of 1', calculated from pressure depend­
ence of elastic constant data, with l' (ay) , obtained from thermal­
expansion measurements. 

''YL 

Mg 1.45" 
Cd 2.16b 

Gd 0.138· 
Zr 0.018 

a Reference 16. 
b Reference 17. 
• Reference 18. 
d Reference 19. 
e Reference 20. 

'YL (ay) 

1.40d 

2.H)e 
0.21 
0.31 

f K. Andres. Pbys. Rev. Lett. 10, 223 (1963 ). 
I Reference 22. 
h Reference 21. 
I Reference 4. 

'PH 'YH(ay) 

1.52" 1. SOd 

2.06b 1.86-
0.34· 0.41' 
0.37 1.01 i 

+0 . 114 -5 . 13 
-0 .125 -9.88 
-0.45 -3 .03 
-0.54 -1.40 
-0.66 -0. 10 

to compressions along the principal Cartesian axes of 
the hexagonal cell. We can compute only an average 
-yp(q) that is a function of the individual -yPl(q) and 
-yP3(q) , where subscripts 1 and 3 correspond to the 
strains perpendicular and parallel to the c axis, respec­
tively, 

.Bv-1·[a Inw,,(q)/aP] 

=-yp(q) 

= (2.B4.Bv hlP(q) + (.BII/.Bv haP(q). (5) 

To compute aw,,(q) / ap from the (aCp(q)/aPh, 
where Cp(q) is the elastic modulus corresponding to 
the wave mode p, q, it is necessary to neglect dispersion 
and assume wiP(q) is directly related to the ultrasonic 
wave velocity corresponding to the p, q mode. We then 
obtain 

-yp(q) = (.BJ./.Bv) (1-n2)+ (.BJI/.Bv)n2 

-t{1-.Bv-1[a InCp(q)/aP]IT, (6) 

where n is the cosine of the angle between the q direc­
tion and the c axis. The average -yp(q) ='Y, which is to 
be compared with the Gruneisen -y derived from ther­
mal expansion data, is, at high temperatures, obtained 
by computing -Y"(q) for N = 300 different q directions, 
with n varying from 0--tl, and averaging to give 

3N 

'YH= (3N)-1 L: -yp(q). (7) 
1 

For low temperatures 

aN 3N 

'YL= L: C,,(q)- 3/2-y7' (q) /L: Cp(q) - 3/2, (8) 
1 1 

where the Cp(q) are the 4°K values of the elastic moduli 
for the p, q mode. This weighting process is necessary 
to take into account the differences in contributions to 
the heat capacity at low temperatures by the individual 
lattice modes. 

The values of 'YH and AiL for Zr as computed from 
Gerlich's computer programS are given in Table V. 
Included for comparison are the 'YH and 'YL for Mg, Cd, 
and Gd, as computed from the same program. In all 
cases the pressure coefficientsl 6-1S were measured at 
temperatures above 273°K, so the 'YL values represent 
an assumption that the pressure coefficients at 4°K are 
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TABLE VI. Differences in linear compressibilities and linear 
expansion coefficients for Mg, Cd, and Zr. 

Mg 

Cd 

Zr 

0.013 

0.660 

-0 .049 

0.019 

0.361 

0 .136 

the same as measured. Also included in Table V are 
the Gruenisen coefficients computed from volume ther­
mal-expansion measurements: 

'Y(av) = (V/ Cv)av{1v, (9) 

where Cv is the lattice heat capacity at constant volume 
and Cv/ V represents the thermal pressure causing the 
thermal expansion. For Mg, Cd, and Gd the agreement 
between the computations from the elasticity data and 
thermal-expansion data4,19 ,20,21 are very good, with the 
Mg values giving excellent agreement. For Zr the 'YH 
value is far below, (1/ 3), the 'YH(av) value. The ap­
parent disagreement between 'YL and 'YL(av) for Zr 
may be a result of the difficulties encountered in ob­
taining reproducible values from polycrystalline ther­
mal-expansion data.22 The near zero value for 'YL is 
consistent with the lack of significant change in lattice 
constants between 500 and 4°K in the x-ray diffraction 
data.4 

The very low value for 'YH in Zr is evidently created 
by giving equal weight to the 'Yp(q) values computed 
from the negative dC44/ dP. Nevertheless, in view of the 
good agreement in the cases of Mg and Cd, and in 
several cubic crystal cases,1 it would appear that the 
'YH (av) should also reflect the presence of negative 
'Yp(q) and thereby give better agreement to 'YH. One 
possible explanation for this dilemma is that the effect 
of the change in the c/ a ratio on the vibrational fre­
quency spectrum is neglected in comparing the hydro­
static pressure effects to thermal expansion. If the 
c/ a change is assumed to have an intrinsic effect the 
'Yp(q) should be composed of two parts: 

(
a lnwl}(q)) dln(c/ a) 

,¥p(q)=['YP(q)]c/"- aln(c/ a) v dlnV ' (to) 

where ['YP(q)]cla and a Inw1,(q) / dIn(c/ a) are intrinsic 
properties, but the d(c/ a) / dV term will depend on ex­
perimental conditions. For thermal expansion, 

d In (c/ a) = ~ [dcc/a) • dTJ= all-a.l. (11) 
d In V c/ a dT dV av' 

whereas for hydrostatic pressure, 

d !n(c/ a) = ~ [d(c/ a) • dPJ= {111-{1.1. . (12) 
d InV ci a dP dV (1v 

The 'Yp(q) contributing to 'Y(av) will be the same as 
those evaluated from Eq. (6) only when Eqs. (11) and 

(12) are numerically equal or when [a Inw1,(q) /a lnc/ a Jv 
vanishes. Table VI lists the differences between axial 
thermal-expansion and compressibility coefficients, re­
spectively, for Mg, Cd, and Zr. It can be seen that Zr 
is somewhat unusual in that all>a.l. but (111<{1.1.. As­
suming a Inwp(q) / dlnc/ a to be negative, the effect of 
the ci a change will enhance the total 'Yp(q) during ther­
mal expansion but have the reverse effect during hydro­
static compression. This would be consistent with the 
differences between the observed 'YH and 'Y(av) for Zr. 
For Mg there would be no significant difference, as is 
observed. For Cd the ci a change under hydrostatic 
pressures would have about twice the effect on a given 
mode wp(q) as the ci a change during thermal e}.'Pan­
sion. Assuming the average (alnwp(q) / dlnc/ a)v to be 
negative, 'YfJ should be greater than 'YH(av) , as is ob­
served. 

The same kind of analysis for the C44 mode of Zr 
suggests that the negative dC44/ dP could be entirely 
due to the c/ a change under hydrostatic pressure. Sepa­
rating the volume change and c/ a change effects we 
obtain 

dC44 (aC44) c ( aC44 ) - =-{1vV - + - ((1.1.-{111) -- • 
dP av cIa a a(c/ a) v 

(13) 

If we assume that (ac.J4/ av)v has a negative value as 
is normally found in cubic metals, the anomalous nega­
tive pressure derivative could arise entirely from a rela­
tively large and negative (ac44/ ac/ a)v. 

Assuming the above interpretation of the 'YH to 
'YII (av) difference is correct, the phenomenon should 
be of fundamental interest as a means for detecting 
wide departures from the quasiharmonic approxima­
tion, which assumes that the change in lattice frequen­
cies are determined only by the volume change. If 
(ac44/ aao)v is positive while (ac44/ aco)v is negative or 
normal in sign, the implication is that there is a strong 
coupling in Zr between the C44 and Cll phonon modes. 

Another possible cause of the 'YFi to 'YFl(av) disagree­
ment is that at high frequencies the C44 phonons fre­
quencies have a normal pressure dependence and that 
the negative dC44/ dP is characteristic only of the ultra­
sonic frequency part of the spectrum. This would also 
imply a strong anharmonic coupling between the C44 

and other modes, with the coupling strength being fre­
quency dependent. There is some evidence23 from neu­
tron inelastic scattering studies of Zr that something 
like this mechanism is indeed occurring for C44 • This 
data shows frequencies at the long wavelength part of 
the spectrum that are considerably higher than ex­
pected from the ultrasonic C44• Since these wavelengths 
are still shorter than in the ultrasonic range they could 
represent the uncoupled C44 phonons that in turn con­
tribute to the thermal expansion. We know, however, 
that this is not true at 4°K since the Debye temperature, 
()D, computed from the ultrasonic velocities at this 
temperature agrees extremely well with that determined 
from accurate low-temperature heat-capacity data.24 
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FIG. 5. Comparison of compres ion 
data for Zr as obtained from measure­
ments of isothermal compressibility, 
ultrasonic-wave velocities and shock­
wave velocities. 
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Thus, the interaction between the ultrasonic waves and 
other lattice waves must come into e;..:i.stence at higher 
temperatures and perhaps increases in degree as the 
transformation from hcp to bcc is approached. Measure­
ments of the pressure coefficients of the elastic moduli 
at high temperatures are needed to look further into 
this question. 

One can also calculate 'YII and 'YL values from the 
isotropic elastic moduli and pressure derivatives. The 
equations are given in Ref. 7. These relations give 'Yll 

'Yll(I SO) = 0.59, 'YL(ISO ) =0.34. 

Here, again, 'Yll is considerably below 'YJl (av) from 
polycrystalline thermal expansion because of the nega­
tive pressure coefficient for the shear modulus /lIl cal­
culated from the single-crystal data. 

TABLE VII. Values of the parameters in Eqs. (15) and (16) used 
for computing (aKT/ aPh at 29B°K. 

Parameter Value Unit 

K. 953 .1 kbar 
KT 94B .44 kbar 
(aK,/aPh 4.0B 
av 17.35 X l(Jil deg- 1 

(aa./aT) 1. OX 10-8 deg- 2 

G" 2.B2 X 106 erg/ g/ deg 
I' 0 .95 
(Ha.aT) 1.005 
(aK./aT)p -9 .35 X I0- 2 kbar/ deg 
(aKT/ aT)p -11.1 X lO-2 kbar/ jeg 
T 29BoK deg 
(aKT/ ap)T 4.11 

I Shock - wo ve dolo ( Wol sh 01 01 ,19571 
• Isother mal compressibility data (Bridg mon ,1947 

'-..::: .. .....-Ul trason ic equat ion 
of slole 

VIVo 

Estimation of Compression of Zr to Higher Pressures 

Anderson25 has shown that the low-pressure ultrasonic 
data can be used to estimate compression of solid at high 
pressures below the phase-transition pressure by means 
of Murnaghan's equation of state 

V / Vo= [1+ (aKT/ap)r (p/KT)]- 1f(8KTI8P)T, (14) 

where V and Vo are volumes at a given pressure and 
at zero pressure, respectively, and KT is the isothermal 
bulk modulus. For zirconium, KT was calculated from 
the relationship K T =Ks(1+a'}'T) - l to be 950.1 kbar. 
To calculate (aKT/ap)r from (aK./ap)r, Overton's26 
relationships were used: 

(aK7') = (aKa) + Ta u,), (C u) [ -: (aKT) 
ap T ap T Cp auAT aT p 

- 2 (:~.) J+[ TO' v'}' (~;) T [(:~.) T 

- ~ ( aa) -lJ, (15) 
0' . - aT p 

and 

- (1+~:u'Y) 2 [a .+T (:;) 1- (16) 

Table VII shows the values of various parameters 
in Eqs. (15) and (16) used for deriving the values of 
(aKT/ap) which is 4,11. Thus the compression equa-
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tion for zirconium is 

v /Vo= [1 +0.00433PjO·243. (17) 

In Fig. 5, a comparison of the ultrasonic equation of 
state (17) is made with the shock-wave data,27 and 
Bridgman's isothermal compressibility data.28 There is 
a poor agreement between Bridgman's data to 98 kbar 
and our results. This is partially explained by the 
phase transformation in Zr.9 At higher pressures 
(760 kbar) the ultrasonic equation of state certainly 
cannot be used to estimate compression. 

SUMMARY OF CONCLUSIONS 

Attempts to correlate volume thermal expansion in 
Zr with the temperature and hydrostatic pressure de­
rivatives of the elastic moduli lead to the conclusion 
that the elastic shear moduli and the transverse phonon 
modes are more dependent on the cia ratio in this hcp 
structure than on the volume changes. In Zr, where the 
anisotropy in linear compressibility is the inverse of 
the anisotropy in linear thermal expansion, the strong 
coupling of the shear mode frequencies to the c/ a ratio 
leads to a wide deviation between the high-temperature 
Gruneisen 7H determined from the hydrostatic pressure 
derivatives of the elastic moduli and the Gruneisen 
parameter calculated from thermal-expansion data. 
Measurements of the elastic modulus changes under 
uniaxial stresses are needed to answer the questions 
raised in this study. Measurements of the high-temper­
ature hydrostatic pressure derivatives should be helpful 
in deciding whether volume changes, rather than rela­
tive axial expansion, produced the effects on the lattice 
vibrations that lead to the hcp to bcc transformation. 
The pressure-induced phase change in zt at 60 kbar 
may be a result of the negative pressure derivative of 
the C44 shear modulus in Zr. 
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